Contribution

We present an active sampling method to speed up conventional pixel-wise background subtraction algorithms. The proposed masking method successfully speeds up approximately 6000% without deteriorating detection performance.

Research Motivation

- Imitate the selective attention mechanism of human
 - Empirical attention
 - Intentional attention to moving object appearing region
 - Neglect background or dynamic region
- Most pixels from surveillance video are background region

Overall Scheme

- **Passive sampling** → Full search.
 - Conventional background subtraction.
 - Probability of foreground is assumed uniform.
- **Active sampling** → Adaptive and flexible search.
 - Designing sampling strategy is required.

Active Sampling Strategy

The sampling mask \(\mathbf{M} \) is obtained by a combination of three masks by a pixel-wise ‘OR’ operation (\(\oplus \)) as

\[
\mathbf{M} = \mathbf{M}_{\text{SEI}} \oplus \mathbf{M}_{\text{SP}} \oplus \mathbf{M}_{\text{RS}}.
\]

The sampling masks are generated based on the foreground probability map \(P_{FG} \) and foreground detected result \(D_{FG} \).

- **Randomly Scattered Sampling** \(M_{RS} \)
 - Uniformly scattered.
 - Random samples are useful to capture unpredictable cases.
- **Surprise Pixel Sampling** \(M_{SP} \)
 - Abnormal foreground is caused by spontaneousness.
 - Random samples are useful to capture unpredictable cases.
- **Active Attentional Sampling** \(M_{SEI} \)
 - Foreground probability map \(P_{FG} \) and foreground detected result \(D_{FG} \), \(D_{SEI} = P_{FG} \oplus D_{FG} \).

Active Sampling Mask Generation

- **Randomly Scattered Sampling** \(M_{RS} \)
 - Uniformly scattered.
 - Random samples are useful to capture unpredictable cases.
- **Surprise Pixel Sampling** \(M_{SP} \)
 - Abnormal foreground is caused by spontaneousness.
 - Random samples are useful to capture unpredictable cases.
- **Active Attentional Sampling** \(M_{SEI} \)
 - Foreground probability map \(P_{FG} \) and foreground detected result \(D_{FG} \), \(D_{SEI} = P_{FG} \oplus D_{FG} \).

ACTIVE ATTENTIONAL SAMPLING FOR SPEED-UP OF BACKGROUND SUBTRACTION

Hyung Jin Chang, Hawook Jeong and Jin Young Choi

(changhj, hujeong, jychoi)@enu.ac.kr

Overall Scheme

Active Attentional Sampling for Speed-up of Background Subtraction

Foreground Probability Map Generation

Using three properties of foreground (\(M_{SEI} \), \(M_{SP} \), and \(M_{RS} \)), the foreground probability for a pixel \(n \) at frame \(t \) is designed as

\[
P_{FG}(n, t) = M_{SEI}(n, t) \times M_{SP}(n, t) \times (1 - M_{RS}(n, t)).
\]

- **Temporal property** \(M_{T} \): A pixel \(n \) is more likely to be a part of the foreground region if it has been a foreground pixel previously.
 \[
 M_{T}(n, t) = 1 - \alpha_{T} M_{T}(n, t-1) + \alpha_{T} D_{T}(n, t).
 \]

- **Spatial property** \(M_{S} \): A pixel \(n \) has a high probability of being a foreground pixel if the surrounding pixels of the foreground have been changed before.
 \[
 M_{S}(n, t) = (1 - \alpha_{S} M_{S}(n, t-1)) + \alpha_{S} D_{S}(n, t).
 \]

- **Frequency property** \(M_{F} \): A pixel \(n \) has a high probability of being a foreground pixel if a foreground/background region has been changed before.
 \[
 M_{F}(n, t) = (1 - \alpha_{F} M_{F}(n, t-1)) + \alpha_{F} D_{F}(n, t).
 \]

Active Attentional Sampling

\(M_{SEI}(n, t) \)

- \(P_{FG}(n, t) = 1 \) if \((M_{SEI}(n, t) \neq 1 \) or \(D_{SEI}(n, t) \neq 0 \)
- 0 otherwise.

Proposed Method

- \(V \)

\[
\frac{\text{Time of Original (ms)}}{\text{Time of Proposed (ms)}} = 0.05
\]

Performance

- **Implementation**
 - Core 2 Duo E5700 CPU, 2 GB RAM.
- **Efficiency of Active Attentional Sampling**
 - We have monitored sequential intensity changes of two pixels (\(A \) and \(B \)). The proposed sampling catches pixel value changing moment adaptively and accurately with much less samples.

Detection Performance Comparison

- The proposed method significantly shortens the detection time (on average 6.6 times).

Speed-up Performance Comparison

- The speed-up ratio of our method surpasses the other similar selective sampling-based methods.

Real-Time Detection in Full HD Video (1920 × 1080)

- The original GMM also takes more time when the foreground region increases. So the ratio of speed-up is maintained uniformly.

- The speed-up ratio of our method surpasses the other similar selective sampling-based methods.

Active Sampling

- Sampling mask \(\mathbf{M} \) obtained by combination of three masks by a pixel-wise ‘OR’ operation (\(\oplus \)) as

\[
\mathbf{M} = \mathbf{M}_{\text{SEI}} \oplus \mathbf{M}_{\text{SP}} \oplus \mathbf{M}_{\text{RS}}.
\]

Active Attentional Sampling

- Foreground probability map \(P_{FG}(n, t) \) and foreground detected result \(D_{FG}(n, t) \).

\[
P_{FG}(n, t) = M_{SEI}(n, t) \times M_{SP}(n, t) \times (1 - M_{RS}(n, t)).
\]

Proposed Method

- Uniformly scattered.
- Random samples are useful to capture unpredictable cases.

Surprise Pixel Sampling

- Abnormal foreground is caused by spontaneousness.
- Random samples are useful to capture unpredictable cases.

Active Attentional Sampling

- Foreground probability map \(P_{FG}(n, t) \) and foreground detected result \(D_{FG}(n, t) \).

\[
P_{FG}(n, t) = M_{SEI}(n, t) \times M_{SP}(n, t) \times (1 - M_{RS}(n, t)).
\]